首页> 外文OA文献 >Kinetics of urease mediated calcite precipitation and permeability reduction of porous media evidenced by magnetic resonance imaging
【2h】

Kinetics of urease mediated calcite precipitation and permeability reduction of porous media evidenced by magnetic resonance imaging

机译:磁共振成像证明脲酶介导的方解石沉淀和多孔介质渗透率降低的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The enzyme urease drives the hydrolysis of urea leading to the release of ammonium ions and bicarbonate; in the presence of calcium, the rise in pH leads to increased calcium carbonate saturation and the subsequent precipitation of calcite. Although such alkalinizing ureolysis is widespread in nature, most studies have focussed on bacteria (i.e. indigenous communities or urease-active Sporosarcina pasteurii) for calcite precipitation technologies. In this study, urease-active jack bean meal (from the legume Canavalia ensiformis) was used to drive calcite precipitation. The rates of ureolysis (k urea), determined from measured NH4 +, enabled a direct comparison to microbial ureolysis rates reported in literature. It is also demonstrated that a simple single reaction model approach can simulate calcite precipitation very effectively (3-6 % normalised root-mean-square deviation). To investigate the reduction of permeability in porous media, jack bean meal (0.5 g L-1) and solutions (400 mM urea and CaCl2) were simultaneously pumped into a borosilicate bead column. One-dimensional magnetic resonance profiling techniques were used, non-invasively, for the first time to quantify the porosity changes following calcite precipitation. In addition, two-dimensional slice selective magnetic resonance images (resolution of ~0.5 × 1.0 mm) revealed that the exact location of calcite deposition was within the first 10 mm of the column. Column sacrifice and acid digestion also confirmed that 91.5 % of calcite was located within the first 14 mm of the column. These results have important implications for the design of future calcite precipitation technologies and present a possible alternative to the well known bacterial approaches.
机译:脲酶酶驱动尿素水解,从而导致铵离子和碳酸氢根的释放。在钙的存在下,pH的升高会导致碳酸钙饱和度增加以及方解石随后沉淀。尽管这种碱化的尿素分解在自然界很普遍,但大多数研究都集中在方解石沉淀技术的细菌(即土著社区或尿素酶活性的Sporosarcina pasteurii)上。在这项研究中,尿素酶活性波豆粉(来自豆类Canavalia ensiformis)被用来驱动方解石沉淀。由测得的NH4 +确定的尿素分解速率(k尿素)可直接与文献报道的微生物尿素分解速率进行比较。还证明了一种简单的单一反应模型方法可以非常有效地模拟方解石沉淀(3-6%的均方根偏差)。为了研究在多孔介质中渗透率的降低,将豆荚粉(0.5 g L-1)和溶液(400 mM尿素和CaCl2)同时泵入硼硅酸盐珠柱中。首次使用非侵入性的一维磁共振波谱技术来量化方解石沉淀后的孔隙度变化。此外,二维切片选择性磁共振图像(分辨率约为0.5×1.0 mm)显示方解石沉积的确切位置在该柱的前10 mm之内。柱牺牲和酸消解也证实了91.5%的方解石位于柱的前14毫米之内。这些结果对未来方解石沉淀技术的设计具有重要意义,并为众所周知的细菌方法提供了一种可能的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号